

Minneapolis, MN

Krysta Skinner – Mechanical Option Advisor – Dr. Stephen Treado The Pennsylvania State University

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction	0	Size: 75.0
	Building Information	C	0
	 Existing Mechanical System 	0	Occupanc
0	Proposed Solutions and Goals	0	Construct
0	Depth 1 – VAV System	\sim	Construct
0	Depth 2 – Chilled Beam System	0	CONSTRUCT
0	Breadth 1 – Structural	0	Delivery N
0	Conclusion	\bigcirc	Proiect Te
0	Questions/Comments)	110,00010
			• Engin
			• Const

- Construction Manager: Adolfson & Peterson Construction
- Owner: The American Swedish Institute

Building Information

- 000 square feet
- cy Type: Cultural Center
- tion Cost: \$13.5 million
- tion Dates: January 2011 June 2012
- Method: Design Bid Build
- eam:
- eers and Architect: HGA

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Building Introduction \bigcirc **Building Information Existing Mechanical System** • Proposed Solutions and Goals Depth 1 – VAV System \bigcirc • Depth 2 – Chilled Beam System Breadth 1 – Structural \bigcirc • Conclusion Questions/Comments \bigcirc

- Geothermal source closed loop heat pump system
- Vertical heat exchanger
- Design Summary
 - Peak design heat loss : 917 MBH
 - Peak design heat gain : 1202 MBH
 - Heat pump COP at 32°F: 3.5
 - Design minimum supply temperature : 32°F
 - Design maximum supply temperature : 88°F
 - 30% propylene glycol in water

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Existing Mechanical System

• Building Introduction

- **Building Information**
- **Existing Mechanical System**
- Proposed Solutions and Goals
- Depth 1 VAV System
- Depth 2 Chilled Beam System
- Breadth 1 Structural \bigcirc
- o Conclusion
- **Questions/Comments** \bigcirc

- Makeup Air Unit
 - 8,000 cfm
 - Mansion
- Water-to-air heat pumps
 - 48 units
 - 300-2,000 cfm range

- Serves the heat pumps located in the Addition and

McQuay Enfinity Horizontal Ceiling Water Source Heat Pump

AAON SA Series Makeup Air Unit

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- **Building Introduction** \bigcirc
- Proposed Solutions and Goals
 - **Mechanical System Evaluation**
 - **Breadth Evaluation**
- Depth 1 VAV System
- Depth 2 Chilled Beam System
- Breadth 1 Structural
- o Conclusion
- Questions/Comments

- Energy usage
- Fan energy
- Goals:
 - Reduce annual operating costs Decrease fan energy

 - Decrease annual amount of energy usage

Mechanical System Evaluation

Areas for improvement:

Cost spent on utilities annually

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- **Building Introduction** \bigcirc
- Proposed Solutions and Goals
 - Mechanical System Evaluation
 - **Breadth Evaluation**
- Depth 1 VAV System
- Depth 2 Chilled Beam System
- Breadth 1 Structural \bigcirc
- o Conclusion
- Questions/Comments

- Breadth 1: Architectural \bigcirc
 - Replace existing roof on walkway
- Breadth 2: Structural \bigcirc
 - Walkway was analyzed for original roof loads Calculate loads for extensive and intensive options Comparison of original to new options

Breadth Evaluation

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Building Introduction \bigcirc **Proposed Solutions and Goals** \bigcirc • Depth 1 – VAV System **Background Information Energy Analysis Energy Costs** First Cost Life-Cycle Cost Recommendation Depth 2 – Chilled Beam System \bigcirc Breadth 1 – Structural \bigcirc o Conclusion Questions/Comments \bigcirc

 \bigcirc zones

Water-to-water heat pumps in combination with geothermal system

Background Information

Fan powered VAV boxes shall supply conditioned air to

- Procedure: \bigcirc

 - usage
 - Determine annual costs
 - Size equipment based on results
 - Compare results to original

Schedules and rooms were inputted into Trane TRACE

Calculate monthly and annual amounts for energy

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction	Anı
0	Proposed Solutions and Goals	
0	Depth 1 – VAV System).00
	Background Information	0.00
	Energy Analysis	
	• Energy Costs 40	0.00
	• First Cost	
	• Life-Cycle Cost	0.00
	Recommendation	
0	Depth 2 – Chilled Beam System).00
0	Breadth 1 – Structural	0.00
0	Conclusion	
0	Questions/Comments	0.00

Energy Analysis

nual Energy Use for HVAC Options by End Use

• 15.1% decrease in end use • 46.4% decrease in fan energy

	Electricity (kWh)	Natural Gas (kBtu)	Total (kBtu/yr)
Original	917,790	66,748	3,199,165
VAV	773,055	78,169	2,716,604

15.8% decrease in electricity \bigcirc 14.6% increase in natural gas \bigcirc

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction
0	Proposed Solutions and Goals
0	Depth 1 – VAV System
	 Background Information
	 Energy Analysis
	Energy Costs
	 First Cost
	 Life-Cycle Cost
	 Recommendation
0	Depth 2 – Chilled Beam System
0	Breadth 1 – Structural
0	Conclusion
0	Questions/Comments

- Utility Rates taken from Xcel Energy
- Electricity Costs:
 - \$11.19/kW from June to Sept. •
 - \$7.79/kW from Oct. to May
- Natural Gas Costs:
 - \$0.59/therm from April to Oct.
 - \$0.65/therm from Nov. to March

Energy Costs

Annual Utility Breakdown				
Source	Energy (10 ⁶ Btu/yr)	Cost (\$/yr)		
Electricity	2,638.4	60,639.45		
Gas	78.2	905.68		
Total	2,717	61,545.13		

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction
0	Proposed Solutions and Goals
0	Depth 1 – VAV System
	 Background Information
	 Energy Analysis
	 Energy Costs
	First Cost
	 Life-Cycle Cost
	 Recommendation
0	Depth 2 – Chilled Beam System
0	Breadth 1 – Structural
0	Conclusion
0	Questions/Comments

- VAV System first cost: \$2,459,350.00
- \$54.65 per square foot
- Included:
 - Geothermal wellfield & piping Water -to-water heat pumps

 - Air handling unit
 - Fan-powered VAV boxes
- Original system first cost: \$2,031,979
- 17.4% increase

First Cost

System Components

Geothermal wellfield & piping

Water-to-water heat pumps

Air handling unit

VAV Boxes

Boiler

Pumps

Valving

Exhaust Fans

Unit heaters & misc.

Air Distribution

Hydronic piping

Controls

Component Costs
\$408,000.00
\$224,000.00
\$240,000.00
\$160,000.00
\$81,600.00
\$7,500.00
\$50,000.00
\$52,100.00
\$37,500.00
\$686,600.00
\$249,450.00
\$312,600.00

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

• Building Introduction • Proposed Solutions and Goals • Depth 1 – VAV System **Background Information Energy Analysis** Energy Costs First Cost **Life-Cycle Cost** Recommendation Depth 2 – Chilled Beam System Breadth 1 – Structural \bigcirc Conclusion • Questions/Comments

- 30 year life-cycle cost
- System was analyzed based on:
 - Capital Investment
 - **Overhaul**
 - Maintenance
 - Annual electric and natural gas costs
 - Escalation Factors

- Total net present value: \$ 5,184,469.43
- 3.9% increase

Life-Cycle Cost

Annual Electricity	Annual Natural Gas	OMB Base Discount		
Costs (\$)	Costs (\$)	Rate (%)		
60,639.45	905.68	3.0		

	Original	VAV
HVAC System First Cost	\$2,031,979.00	\$2,459,350.00
Annual Maintenance Cost	\$52,100.00	\$44,285.00
Replacements Costs: 5	-	-
10	-	-
15	\$275,500.00	\$89,600.00
20	\$372,479.00	\$544,100.00
25	\$81,600.00	\$81,600.00
30	\$275,500.00	\$489,600.00
Annual Recurring Electric	\$73,720.36	\$60,639.45
Annual Recurring Natural Gas	\$817.27	\$905.68
Total Energy Costs	\$74,537.63	\$61,545.13

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction	0	Decrease
0	Proposed Solutions and Goals		• 151%
0	Depth 1 – VAV System		• 46.4%
	 Background Information 		• 16.9%
	Energy Analysis		• 31.3%
	Energy Costs		\$13 N8N 0
	 First Cost 	0	ψ13,000.2
	Life-Cycle Cost	0	Total first
	 Recommendation 		
0	Depth 2 – Chilled Beam System	0	Раубаск р
0	Breadth 1 – Structural	0	Is this a g
0	Conclusion		
\bigcirc	Ouestions/Comments		

Recommendation

- e of energy consumption and usage
- % overall
- % for fan and pump energy
- % for cooling
- % for heating
- 91 less spent on electricity annually
- t cost: \$2,459,350
- period of 33 years
- good option?

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Building Introduction \bigcirc **Proposed Solutions and Goals** \bigcirc Depth 1 – VAV System \bigcirc **Depth 2 – Chilled Beam System** \bigcirc **Background Information Energy Analysis Energy Costs Chilled Beam Calculation** First Cost Life-Cycle Cost Recommendation Breadth 1 – Structural \bigcirc Conclusion \bigcirc Questions/Comments \bigcirc

spaces

system

Background Information

Active chilled beams shall supply conditioned air to the

Water-to-water heat pumps combined with geothermal

- Procedure: \bigcirc

 - Calculat usage
 - Size equ
 - Calcula

- Determine annual costs and first opsts
- Compare results to original

Schedules and rooms were inputted into Trane TRACE

s for energy

d size

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction	4	An
0	Proposed Solutions and Goals		
0	Depth 1 – VAV System	J.00	
0	Depth 2 – Chilled Beam System 50	0.00	
	 Background Information 		
	• Energy Analysis 40	0.00	
	 Energy Costs 		
	• Chilled Beam Calculation ³⁰	0.00	
	• First Cost		
	• Life-Cycle Cost	J.00	
	Recommendation	0.00	
0	Breadth 1 – Structural	0.00	
0	Conclusion	0.00	
\bigcirc	Ouestions/Comments		

Energy Analysis

nual Energy Use for HVAC Options by End Use

• 12.4% decrease in end use

• 66.3% decrease in fan energy

• Primary airflow decreases by 65%

	Electricity (kWh)	Natural Gas (kBtu)	Total (kBtu/yr)
Original	917,790	66,748	3,199,165
Chilled Beams	810,230	31,113	2,798,427

• 11.7% decrease in electricity

• 53.4% decrease in natural gas

se iergy es by 65%

icity al gas

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction		
0	Proposed Solutions and Goals		
0	Depth 1 – VAV System		
0	Depth 2 – Chilled Beam System		
	 Background Information 		
	Energy Analysis		
	Energy Costs		
	Chilled Beam Calculation		
	First Cost		
	Life-Cycle Cost		
	Recommendation		
0	Breadth 1 – Structural		
0	Conclusion		
0	Questions/Comments		

- Utility Rates taken from Xcel Energy 0
- Electricity Costs:
 - \$11.19/kW from June to Sept.
 - \$7.79/kW from Oct. to May
- Natural Gas Costs:
 - \$0.59/therm from April to Oct.
 - \$0.65/therm from Nov. to March

Energy Costs

Annual Utility Breakdown				
Source	Energy (10 ⁶ Btu/yr)	Cost (\$/yr)		
Electricity	2,765.3	64,953.16		
Gas	33.1	556.70		
Total	2,798	65,509.85		

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction		
0	Proposed Solutions and Goals		
0	Depth 1 – VAV System		
0	Depth 2 – Chilled Beam System		
	 Background Information 		
	 Energy Analysis 		
	 Energy Costs 		
	 Chilled Beam Calculation 		
	 First Cost 		
	 Life-Cycle Cost 		
	 Recommendation 		
0	Breadth 1 – Structural		
0	Conclusion		
0	Ouestions/Comments		

• Taken from Trace:

- $Q_{T(sensible)} = 6,480 \text{ Btu/hr}$
- $Q_{T(latent)} = 1,000 \text{ Btu/hr}$
- Based on ASHRAE 62.1: $V_r = 85$ cfm
- Room conditions:
 - $T_r = 75^{\circ}F$
 - $w_r = 0.0100 \text{ lbw/lbda}$
- Air conditions:
 - $T_v = 55^{\circ}F$
 - $w_{v} = 0.0090 \text{ lbw/lbda}$

Chilled Beam Calculation

- Cooling capacity of air: \bigcirc
 - $Q_{(latent)} = 411 Btu/hr$
 - $Q_{(sensible)} = 1,836 \text{ Btu/hr}$
- - V=207 cfm
 - $Q_{(\text{sensible})} = 4,463 \text{ Btu/hr}$
- Selection made from Price manufacturer:
 - 210 cfm per beam
 - Beam length of 6 ft
 - 7,059 Btu/hr per beam
 - # of beams needed = 210/207=1
- Total of 546 lf of chilled beams needed \bigcirc

• $Q_{T(latent)} > Q_{(latent)}$ therefore, need to recalculate V(cfm)

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction	0	Chilled be
0	Proposed Solutions and Goals		• \$2,549
0	Depth 1 – VAV System		• \$56.65
0	Depth 2 – Chilled Beam System	0	Included:
	 Background Information 		• Geoth
	Energy Analysis		• Water
	Energy Costs		• DOAS
	Chilled Beam Calculation		• Chille
	First Cost	\bigcirc	Original s
	Life-Cycle Cost	U	original 3
	 Recommendation 	0	20.3% inc
0	Breadth 1 – Structural		
0	Conclusion		
0	Ouestions/Comments		

First Cost

- l beam first cost: 549,100.00 6.65 per square foot
- othermal wellfield & piping
- ter -to-water heat pumps
- AS unit
- lled beams
- al system first cost: \$2,031,979
- increase

System Components

Geothermal wellfield & pipin

Water-to-water heat pump

DOA

Chilled Beam

Boil

Pump

Valvir

Exhaust Fan

Unit heaters & mis

Air Distributio

Hydronic pipin

Contro

	Component Costs
١g	\$408,000.00
ps	\$224,000.00
AS	\$58,000.00
ns	\$177,450.00
er	\$81,600.00
ps	\$7,500.00
١g	\$50,000.00
ns	\$52,100.00
SC.	\$37,500.00
on	\$784,600.00
١g	\$327,600.00
ls	\$390,750.00

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction		
0	Proposed Solutions and Goals		
0	Depth 1 – VAV System		
0	Depth 2 – Chilled Beam System		
	 Background Information 		
	 Energy Analysis 		
	 Energy Costs 		
	 Chilled Beam Calculation 		
	 First Cost 		
	 Life-Cycle Cost 		
	Recommendation		
0	Breadth 1 – Structural		
0	Conclusion		
0	Questions/Comments		

- 30 year life-cycle cost
- System was analyzed based on:
 - Capital Investment
 - Overhaul
 - Maintenance
 - Annual electric and natural gas costs
 - Escalation Factors

Maintenance (\$)

36,470.00

- Total net present value: \$ 5,678,296.01
- o 12.2% increase

Life-Cycle Cost

Annual Electricity	Annual Natural Gas	OMB Base
Costs (\$)	Costs (\$)	Discount Rate (%)
63,951.48	524.13	

	Original	Chilled Beam
HVAC System First Cost	\$2,031,979.00	\$2,549,100.00
Annual Maintenance Cost	\$52,100.00	\$36,470.00
Replacements Costs: 5	-	-
10	-	-
15	\$275,500.00	\$89,600.00
20	\$372,479.00	\$622,250.00
25	\$81,600.00	\$259,050.00
30	\$275,500.00	\$147,600.00
Annual Recurring Electric	\$73,720.36	\$63,951.48
Annual Recurring Natural Gas	\$817.27	\$524.13
Total Energy Costs	\$74,537.63	\$64,475.61

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction	0	Decrease
0	Proposed Solutions and Goals	C	• 12 5%
0	Depth 1 – VAV System		• 66.3%
0	Depth 2 – Chilled Beam System		• 38.5%
	Background Information		• 65% f
	Energy Analysis	\bigcirc	\$9 768 88
	 Energy Costs 	0	Ψ,700.00
	Chilled Beam Calculation	0	Total first
	• First Cost		Dauhackr
	Life-Cycle Cost	0	Гаураск ј
	 Recommendation 	0	Is this a g
0	Breadth 1 – Structural		
0	Conclusion		
\bigcirc	Ouestions/Comments		

Recommendation

- of energy consumption and usage
- 6 overall
- 6 for fan and pump energy
- 6 for heating
- for primary airflow
- B less spent on electricity annually
- t cost: \$2,549,100.00
- period of 52 years
- good option?

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

0	Building Introduction	Analys	sis:
0	Proposed Solutions and Goals	0	Calcul
0	Depth 1 – VAV System		Dood
0	Depth 2 – Chilled Beam System	O	Deau
0	Breadth 1 – Structural	0	Flat ro
	Structural Overview	0	Roof li
	Original Roof Deck Analysis		
	Extensive Green Roof Analysis	0	Weigh
	 Recommendation 		manuf
0	Conclusion		
0	Questions/Comments	0	Total l
			Comp

Structural Overview

- lations were completed for the original roof
- loads
- oof snow load
- ive load
- nts from LiveRoof Hybrid Green Roof System
- facturer
- loads based on factored load equation
- Comparison of new loads to original

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- - load
- Snow Load: S = 35 psf
- Live Load: $L_r = 20 \text{ psf}$
- \bigcirc

• Dead Load: D = 25 psf Metal deck, rigid insulation, built up roofing, misc. dead

Calculated Factored Load: $R_{\mu} = 86 \text{ psf}$

- Decking selection: \bigcirc
 - Use 3N18, 1 span of 8'-4"
- Check:
 - Max. SDI Construction Span = 15'-11" > 8'-4"
 - For 10'-0" Total Load = 91 psf >86 psf

		14-14	
No. of	Deck	Max. SDI Const.	
Spans	Туре	Span	10-0
	N22	11'-7	50 / 43
	N20	13'-2	66 / 56
1	N19	14'-7	79 / 69
	N18	15'-11	91/81
	N16	18'-6	118 / 110
1		1	I I

Vulcraft Steel Roof and Floor Deck Catalog 2008

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- Dead Load: D = 31 psf
 - Metal deck, rigid insulation, fenestration system, green roof (lite) saturated, misc. dead load
- Snow Load: S = 35 psf
- Live Load: $L_r = 20 \text{ psf}$
- Calculated Factored Load: R₁₁ = 94 psf \bigcirc

- Decking selection: \bigcirc
 - Use 3N16, 1 span of 8'-4"
- Check:
 - Max. SDI Construction Span = 18'-6" > 8'-4"
 - For 10'-0" Total Load = 118psf >94 psf

No. of	Deck	Max. SDI Const.		
Spans	Туре	Span	10-0	Τ
	N22	11'-7	50 / <mark>43</mark>	
	N20	13'-2	66 / <mark>56</mark>	
1	N19	14'-7	79 / <mark>6</mark> 9	
	N18	15'-11	91 / <mark>81</mark>	
	N16	18'-6	118 / 110	

Vulcraft Steel Roof and Floor Deck Catalog 2008

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- Building Introduction
- Proposed Solutions and Goals
- Depth 1 VAV System
- Depth 2 Chilled Beam System
- Breadth 1 Structural
 - Structural Overview
 - **Original Roof Deck Analysis**
 - Extensive Green Roof Analysis
 - Recommendation
- Conclusion
- Questions/Comments

Roof Type	Deck	Dead Load	Roof Live Load	Snow Load	Factored Load
Original	3N18	29	20	35	91
Extensive	3N16	34	20	35	97
Intensive (Opt. 1)	2VLI16	119	100	35	303
Intensive (Opt. 2)	3VLI16	119	100	35	303
Intensive (Opt. 3)	1.5VLI18	105	100	35	286

Recommendation

Increase in loads \bigcirc

- Extensive: 6.2%
- Intensive Opt .1 and 2: 70%
- Intensive Opt. 3: 68%
- Selection: Extensive green roof
 - Smallest increase in loads 8 psf increase in factored loads

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- Building Introduction
- Proposed Solutions and Goals
- Depth 1 VAV System
- Depth 2 Chilled Beam System
- Breadth 1 Structural \bigcirc
- Conclusion
- Questions/Comments

	VAV (%)	Chilled Beam (%)
End Use	(15.1)	(12.5)
Heating	(31.3)	(38.5)
Cooling	(16.9)	20.5
Fan/Pump	(46.4)	(66.3)
FC	17.4	20.3
LLC	3.9	12.2
SPB	33 years	52 years

• Mechanical system recommendation: VAV

Conclusion

Conclusions for depth :

- Conclusion for Structural breadth: Extensive green roof
 - Roof decking 3N16

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- Building Introduction
- Proposed Solutions and Goals
- Depth 1 VAV System
- Depth 2 Chilled Beam System
- Breadth 1 Structural
- Conclusion
- Questions/Comments

Acknowledgements

AE Faculty HGA Architects and Engineers The American Swedish Institute Friends and Family

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- Building Introduction
- Proposed Solutions and Goals
- Depth 1 VAV System
- Depth 2 Chilled Beam System
- Breadth 1 Structural
- Conclusion
- Questions/Comments

Questions?

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Cooling Design Weekday Schedule				
Start Time	End Time	Percentage		
Midnight	5 a.m.	30		
5 a.m.	6 a.m.	60		
6 a.m.	7 a.m.	90		
7 a.m.	8 p.m.	100		
8 p.m.	9 p.m.	90		
9 p.m.	10 p.m.	60		
10 p.m.	Midnight	30		

Start Mid

Occupancy Schedule

Heating Design Schedule

t Time	End Time	Percentage
lnight	Midnight	100

Saturday and Sunday Schedule				
Start Time	End Time	Percentage		
Midnight	5 a.m.	30		
5 a.m.	7 a.m.	60		
7 a.m.	9 a.m.	90		
9 a.m.	6 p.m.	100		
6 p.m.	8 p.m.	90		
8 p.m.	9 p.m.	60		
9 p.m.	Midnight	30		

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Energy Costs

Chilled Beam Monthly Utility Costs

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Emissions and Energy Usage

Annual Energy Use for HVAC Options by End Use

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Life-Cycle Cost

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Ventilation Schematic for VAV

VAV Schematic

Geothermal Schematic for VAV

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

Ventilation Schematic for Chilled Beams

Chilled Beam Schematics

Geothermal Schematic for Chilled Beams

Minneapolis, MN \ Krysta Skinner \ Mechanical Option

- Chilled Beam Calculation:
- Taken from Trace:
 - $Q_{T(sensible)} = 6,480 \text{ Btu/hr}$
 - $Q_{T(latent)} = 1,000 Btu/hr$
 - $Q_{total} = 7,480 \text{ Btu/hr}$
- Type of room based on ASHRAE Std. 62.1-2007, Table 6.1: Library:
 - \circ Rp = 5 cfm/person
 - $Pz = 500(ft^2)*10/1000(\# person/ft^2) = 5 person$
 - $Ra = 0.12 cfm/ft^{2}$
 - $Az = 500 \text{ ft}^2$
 - \circ Ez = 1
 - Vr(cfm) = Rp*Pz+Ra*Az = 5*5+0.12*500 = 85 cfm

- Room conditions:
 - $T_r = 75^{\circ}F$
 - $w_r = 0.0100 \text{ lbw/lbda}$
- V conditions:
 - $T_v = 55^{\circ}F$
 - $w_{y} = 0.0090 \text{ lbw/lbda}$
- Calculated values:
 - $Q_{(latent)} = 4840 * cfm^* (w_r w_v)$
 - $Q_{(latent)} = 4840*85*(0.01-0.009) = 411 Btu/hr$
 - $Q_{(\text{sensible})} = 1.08 \text{*cfm} \text{*}(T_r T_v)$
 - $Q_{(sensible)} = 1.08*85*(75-55) = 1,836 Btu/hr$
- $Q_{T(latent)} > Q_{(latent)}$ therefore, need to recalculate V(cfm)
 - $V = [Q_{T(latent)}] / [4840*(w_r w_v)]$
 - V = [1000] / [4840* (0.01-0.009)] = 207 cfm

Chilled Beam Full Calculation

- \circ Q_(sensible) = 1.08*207*(75-55) = 4,463 Btu/hr • Check:
 - $Q_{(sensible)} = 6,480Btu/hr-4,463Btu/hr = 2,017Btu/hr$
- Selection made from Price manufacturer:
 - 210 cfm per beam
 - Nozzle diameter of 0.300 inches
 - Beam length of 6 ft
 - 7,059 Btu/hr per beam
 - # of beams needed = 210/207=1 4.2 inches of head per beam

 - 6 lf of beams needed
- All chilled beam results can be seen in Appendix G of report